Understanding how and why certain communities bear a disproportionate burden of disease is challenging due to the scarcity of data on these communities. Surveys provide a useful avenue for accessing hard-to-reach populations, as many surveys specifically oversample understudied and vulnerable populations. When survey data is used for analysis, it is important to account for the complex survey design that gave rise to the data, to avoid biased conclusions. The field of Bayesian survey statistics aims to account for such survey design while leveraging the advantages of Bayesian models, which can flexibly handle sparsity through borrowing information and provide a coherent inferential framework to easily obtain variances for complex models and data types. For these reasons, Bayesian survey methods seem uniquely well-poised for health disparities research, where heterogeneity and sparsity are frequent considerations. This review discusses three main approaches found in the Bayesian survey methodology literature: 1) multilevel regression and post-stratification, 2) weighted pseudolikelihood-based methods, and 3) data augmentation. We discuss advantages and disadvantages of each approach, examine recent applications and extensions, and consider how these approaches may be leveraged to improve research in population health equity. Keywords: Bayesian statistics, health disparities, survey design, population health
翻译:由于缺少关于这些社区的数据,了解某些社区如何承受不成比例的疾病负担以及为什么某些社区承受过重的疾病负担是困难的,因此,由于许多调查都提供了接触难以接触到的人口的有用途径,因为许多调查具体地说来,调查研究过度过低和脆弱人口。在使用调查数据进行分析时,必须说明导致数据产生的复杂调查设计,以避免得出偏颇的结论。巴伊西亚调查统计领域的目的是对这种调查设计进行核算,同时利用巴伊西亚模式的优势,这些模式能够通过借用信息灵活地处理无足轻重的问题,并提供一个连贯的推断框架,方便地获得复杂模型和数据类型的差异。由于这些原因,巴伊斯调查方法似乎对健康差异研究有着独特的广泛的认识,在这种研究中,异质性和偏狭性是经常考虑。本审查讨论了巴伊斯调查方法文献中发现的三个主要方法:(1) 多层次的回归和批准后,(2) 加权假象方法,(3) 数据增加。我们讨论了每一种方法的优劣之处,审查最近的应用和扩展,并考虑如何利用这些方法来改进人口保健统计方面的研究,关键词。</s>