We study the problem of dynamic matching in heterogeneous networks, where agents are subject to compatibility restrictions and stochastic arrival and departure times. In particular, we consider networks with one type of easy-to-match agents and multiple types of hard-to-match agents, each subject to its own compatibility constraints. Such a setting arises in many real-world applications, including kidney exchange programs and carpooling platforms. We introduce a novel approach to modeling dynamic matching by establishing the ordinary differential equation (ODE) model, which offers a new perspective for evaluating various matching algorithms. We study two algorithms, namely the Greedy and Patient Algorithms, where both algorithms prioritize matching compatible hard-to-match agents over easy-to-match agents in heterogeneous networks. Our results demonstrate the trade-off between the conflicting goals of matching agents quickly and optimally, offering insights into the design of real-world dynamic matching systems. We provide simulations and a real-world case study using data from the Organ Procurement and Transplantation Network to validate theoretical predictions.
翻译:我们研究不同网络的动态匹配问题,不同网络的代理商受到兼容性限制以及随机进出境时间的限制。特别是,我们考虑网络中存在一种容易匹配的代理商和多种难以匹配的代理商,每个都受其自身兼容性的限制。这种环境出现在许多现实世界的应用中,包括肾交换程序和汽车搭配平台。我们采用一种新的方法,通过建立普通差异方程(ODE)模型来模拟动态匹配,为评估各种匹配算法提供了新的视角。我们研究两种算法,即贪婪和病人算法,其中两种算法都优先考虑匹配兼容的硬匹配代理商,而不是不同网络的简单匹配代理商。我们的结果显示匹配代理商的相互冲突目标之间的权衡,即快速和最佳地,为现实世界动态匹配系统的设计提供洞察力。我们利用有机采购和移植网络的数据提供模拟和真实世界案例研究,以验证理论预测。</s>