This work gives a Lie operator derivation of various Boris solvers via a detailed study of trajectory errors in a constant magnetic field. These errors in the gyrocenter location and the gyroradius are the foundational basis for why Boris solvers existed, independent of any finite-difference schemes. This work shows that there are two distinct ways of eliminating these errors so that the trajectory of a charged particle in a constant magnetic field is exactly on the cyclotron orbit. One way reproduces the known second-order symmetric Boris solver. The other yields a previously unknown, but also on-orbit solver, not derivable from finite-difference schemes. By revisiting some historical calculations, it is found that many publications do not distinguish the poorly behaved leap-frog Boris solver from the symmetric second-order Boris algorithm. This symmetric second-order Boris solver's trajectory is much more accurate and remains close to the exact orbit in a combined $nonuniform$ electric and magnetic field at time-steps greater than the cyclotron period. Finally, this operator formalism showed that Buneman's cycloid fitting scheme is mathematically identical to Boris' on-orbit solver and that Boris' E-B splitting is unnecessary.
翻译:这项工作通过对恒定磁场的轨迹错误进行详细研究, 使鲍里斯各解答器产生一个“ 谎言” 操作器。 这些在陀螺中心位置和陀罗拉迪斯的错误是鲍里斯解答器存在的基础, 独立于任何有限差异计划。 这项工作表明, 有两种不同的方法可以消除这些错误, 使恒定磁场中充电粒子的轨迹完全在环球轨道上。 一种方式是复制已知的二阶对称鲍里斯解答器。 另一种方式是复制已知的二阶对称的二阶电磁解答器。 另一种方式是生成一个先前未知的, 但也生成在轨道上的解答器, 无法从有限差异计划中衍生出来。 通过重新审视一些历史计算, 发现许多出版物并没有将行为欠佳的跳蛙鲍里斯解答器与对等二阶法的鲍里斯解算法区别开来。 这个对等二阶的第二阶线的粒子的轨迹轨迹轨迹非常精确, 仍然接近精确轨道, 电子和磁场场在比环曲调时段要大。 最后, 这个操作者的形式化器显示, 平流的平流平流平流法是不相平流平流法, 。