In this paper we provide a new locally consistent decomposition of strings. Each string $x$ is decomposed into blocks that can be described by grammars of size $\widetilde{O}(k)$ (using some amount of randomness). If we take two strings $x$ and $y$ of edit distance at most $k$ then their block decomposition uses the same number of grammars and the $i$-th grammar of $x$ is the same as the $i$-th grammar of $y$ except for at most $k$ indexes $i$. The edit distance of $x$ and $y$ equals to the sum of edit distances of pairs of blocks where $x$ and $y$ differ. Our decomposition can be used to design a sketch of size $\widetilde{O}(k^2)$ for edit distance, and also a rolling sketch for edit distance of size $\widetilde{O}(k^2)$. The rolling sketch allows to update the sketched string by appending a symbol or removing a symbol from the beginning of the string.


翻译:在本文中, 我们提供了一个新的本地一致的字符串分解。 每一个字符串 $x$ x$ 是分解成块块的, 这些块块的大小可以由 $\ bloytilde{O}(k)$( 使用一定数量的随机性) 来描述。 如果我们用两个字符串 $x$ 和 $y 来编辑距离, 最多为 $k$, 那么他们的块块分解使用相同数量的 graphmar 和 $-th grammar$x$( $x) 和 $th grammar$x$( $-th) 相同。 滚动的草图可以通过附上符号或从字符串的起始处删除符号来更新素描的字符串。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年8月18日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
54+阅读 · 2022年1月1日
Arxiv
10+阅读 · 2021年11月3日
Arxiv
15+阅读 · 2021年7月14日
Arxiv
14+阅读 · 2021年3月10日
Arxiv
13+阅读 · 2021年3月3日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年8月18日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员