In this paper we provide a new locally consistent decomposition of strings. Each string $x$ is decomposed into blocks that can be described by grammars of size $\widetilde{O}(k)$ (using some amount of randomness). If we take two strings $x$ and $y$ of edit distance at most $k$ then their block decomposition uses the same number of grammars and the $i$-th grammar of $x$ is the same as the $i$-th grammar of $y$ except for at most $k$ indexes $i$. The edit distance of $x$ and $y$ equals to the sum of edit distances of pairs of blocks where $x$ and $y$ differ. Our decomposition can be used to design a sketch of size $\widetilde{O}(k^2)$ for edit distance, and also a rolling sketch for edit distance of size $\widetilde{O}(k^2)$. The rolling sketch allows to update the sketched string by appending a symbol or removing a symbol from the beginning of the string.
翻译:在本文中, 我们提供了一个新的本地一致的字符串分解。 每一个字符串 $x$ x$ 是分解成块块的, 这些块块的大小可以由 $\ bloytilde{O}(k)$( 使用一定数量的随机性) 来描述。 如果我们用两个字符串 $x$ 和 $y 来编辑距离, 最多为 $k$, 那么他们的块块分解使用相同数量的 graphmar 和 $-th grammar$x$( $x) 和 $th grammar$x$( $-th) 相同。 滚动的草图可以通过附上符号或从字符串的起始处删除符号来更新素描的字符串。