Prompt tuning, or the conditioning of a frozen pretrained language model (PLM) with soft prompts learned from data, has demonstrated impressive performance on a wide range of NLP tasks. However, prompt tuning requires a large training dataset to be effective and is outperformed by finetuning the entire PLM in data-scarce regimes. Previous work (Gu et al., 2022, Vu et al., 2022) proposed to transfer soft prompts pretrained on the source domain to the target domain. In this paper, we explore domain adaptation for prompt tuning, a problem setting where unlabeled data from the target domain are available during pretraining. We propose bOosting Prompt TunIng with doMain Adaptation (OPTIMA), which regularizes the decision boundary to be smooth around regions where source and target data distributions are similar. Extensive experiments demonstrate that OPTIMA significantly enhances the transferability and sample-efficiency of prompt tuning compared to strong baselines. Moreover, in few-shot settings, OPTIMA exceeds full-model tuning by a large margin.
翻译:快速调整,或对从数据中学会的软性先导语言模型(PLM)进行调试,或对从数据中学会的软性提示器进行调试,在一系列国家语言平台任务中表现出令人印象深刻的成绩;然而,快速调试需要大量的培训数据集才能有效,而且通过在数据分离制度中对整个PLM进行微调而优于整个PLM。过去的工作(Gu等人,2022年,Vu等人,2022年)提议将源域预先训练过的软性提示器转让到目标域。在本文中,我们探索为迅速调试而调用域,这是一个在培训前可得到目标域未加标记的数据的问题设置。我们建议,在DOMain适应(OPTIMA)下,将决策界限规范在来源和目标数据分布相似的区域之间保持平稳。广泛的实验表明,与强有力的基线相比,ASOMIMA大大提高了快速调的可转移性和抽样效率。此外,在少数情况下,UMAMA超出全模型调的大幅度。