The smooth 1-Wasserstein distance (SWD) $W_1^\sigma$ was recently proposed as a means to mitigate the curse of dimensionality in empirical approximation while preserving the Wasserstein structure. Indeed, SWD exhibits parametric convergence rates and inherits the metric and topological structure of the classic Wasserstein distance. Motivated by the above, this work conducts a thorough statistical study of the SWD, including a high-dimensional limit distribution result for empirical $W_1^\sigma$, bootstrap consistency, concentration inequalities, and Berry-Esseen type bounds. The derived nondegenerate limit stands in sharp contrast with the classic empirical $W_1$, for which a similar result is known only in the one-dimensional case. We also explore asymptotics and characterize the limit distribution when the smoothing parameter $\sigma$ is scaled with $n$, converging to $0$ at a sufficiently slow rate. The dimensionality of the sampled distribution enters empirical SWD convergence bounds only through the prefactor (i.e., the constant). We provide a sharp characterization of this prefactor's dependence on the smoothing parameter and the intrinsic dimension. This result is then used to derive new empirical convergence rates for classic $W_1$ in terms of the intrinsic dimension. As applications of the limit distribution theory, we study two-sample testing and minimum distance estimation (MDE) under $W_1^\sigma$. We establish asymptotic validity of SWD testing, while for MDE, we prove measurability, almost sure convergence, and limit distributions for optimal estimators and their corresponding $W_1^\sigma$ error. Our results suggest that the SWD is well suited for high-dimensional statistical learning and inference.


翻译:最近有人提议,平滑的1-瓦瑟斯坦距离(WWD) W_1美元1 +++gmas 美元(SWD) 是减轻实证近似中维度的诅咒的一种手段,同时保留了瓦色尔斯坦结构。事实上,社署展示了光度趋同率,继承了经典瓦瑟斯坦距离的衡量和地形结构。由于上述原因,这项工作对社署进行了彻底的统计研究,包括实证$_1美元(SWD)的高度限值分配结果,包括实证1美元1美元(SWD),鞋带的一致性、集中性不平等,以及Berry-Esseentyld 型界限。 衍生出的非变性限值与传统的实证 $1美元(W1美元) 截然不同,其结果仅在一维度的情况下才为类似。我们还探索了静度和定值分配,当平滑度参数以美元缩,以足够缓慢的速度将Sgremodferal 分布成0.0美元。抽样分布的精度,SWDalalalalalalalalal dal dalation lader lader 和Sadaltistration lader lade laut the the the the the laut the lademocialtistration laudal laudal laislation laut lad laut the the sladaldal lad ladal laut the the the the the the the the the sildaltialdaltimentaltimentaldaltimentaltimentaldaldaldaldaldald lad lad ladal ladal ladal ladaldaldaldaldaldaldaldal lad ladal lad lad ladaldal lad lad ladaldaldaldaldaldaldment lad lad lad ladald lad lad lad lad ladaldaldaldaldaldaldaldaldaldment lad ladment ladal lad

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
已删除
将门创投
6+阅读 · 2019年6月10日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关VIP内容
【图与几何深度学习】Graph and geometric deep learning,49页ppt
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
已删除
将门创投
6+阅读 · 2019年6月10日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员