Let $\{P_{\theta}:\theta \in {\mathbb R}^d\}$ be a log-concave location family with $P_{\theta}(dx)=e^{-V(x-\theta)}dx,$ where $V:{\mathbb R}^d\mapsto {\mathbb R}$ is a known convex function and let $X_1,\dots, X_n$ be i.i.d. r.v. sampled from distribution $P_{\theta}$ with an unknown location parameter $\theta.$ The goal is to estimate the value $f(\theta)$ of a smooth functional $f:{\mathbb R}^d\mapsto {\mathbb R}$ based on observations $X_1,\dots, X_n.$ In the case when $V$ is sufficiently smooth and $f$ is a functional from a ball in a H\"older space $C^s,$ we develop estimators of $f(\theta)$ with minimax optimal error rates measured by the $L_2({\mathbb P}_{\theta})$-distance as well as by more general Orlicz norm distances. Moreover, we show that if $d\leq n^{\alpha}$ and $s>\frac{1}{1-\alpha},$ then the resulting estimators are asymptotically efficient in H\'ajek-LeCam sense with the convergence rate $\sqrt{n}.$ This generalizes earlier results on estimation of smooth functionals in Gaussian shift models. The estimators have the form $f_k(\hat \theta),$ where $\hat \theta$ is the maximum likelihood estimator and $f_k: {\mathbb R}^d\mapsto {\mathbb R}$ (with $k$ depending on $s$) are functionals defined in terms of $f$ and designed to provide a higher order bias reduction in functional estimation problem. The method of bias reduction is based on iterative parametric bootstrap and it has been successfully used before in the case of Gaussian models.


翻译:Let $\\ p@ p@ testa} :\\\ a\ a\ a\ a\ a\ a\ a\ a\ a\ a\\\\ mbR} $,讓 $X_ 1,\ dots, X_n美元是 i.d. d. r.v. 樣式從發送 $P _theta} 中抽取的美元,一個未知的位置參數 $Ta} (dx) = = =x- V(x- theta) dx, 美元 =dxxx, 美元, 美元====================================xxxxxxx: ======xxxxxxx, ========xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

0
下载
关闭预览

相关内容

专知会员服务
42+阅读 · 2020年12月18日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
已删除
将门创投
8+阅读 · 2018年10月31日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
0+阅读 · 2021年9月30日
Arxiv
4+阅读 · 2018年3月14日
VIP会员
相关资讯
已删除
将门创投
8+阅读 · 2018年10月31日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员