This paper considers the problem of nonparametric quantile regression under the assumption that the target conditional quantile function is a composition of a sequence of low-dimensional functions. We study the nonparametric quantile regression estimator using deep neural networks to approximate the target conditional quantile function. For convenience, we shall refer to such an estimator as a deep quantile regression (DQR) estimator. We show that the DQR estimator achieves the nonparametric optimal convergence rate up to a logarithmic factor determined by the intrinsic dimension of the underlying compositional structure of the conditional quantile function, not the ambient dimension of the predictor. Therefore, DQR is able to mitigate the curse of dimensionality under the assumption that the conditional quantile function has a compositional structure. To establish these results, we analyze the approximation error of a composite function by neural networks and show that the error rate only depends on the dimensions of the component functions. We apply our general results to several important statistical models often used in mitigating the curse of dimensionality, including the single index, the additive, the projection pursuit, the univariate composite, and the generalized hierarchical interaction models. We explicitly describe the prefactors in the error bounds in terms of the dimensionality of the data and show that the prefactors depends on the dimensionality linearly or quadratically in these models. We also conduct extensive numerical experiments to evaluate the effectiveness of DQR and demonstrate that it outperforms a kernel-based method for nonparametric quantile regression.
翻译:本文根据以下假设考虑非对称量化回归的问题:目标的有条件量化函数是低维函数序列的构成。我们用深神经网络研究非对称量化回归估计值,以接近目标的有条件量化函数。为方便起见,我们应该将这种估算值称为深度量化回归(DQR)估计值。我们显示,DQR估计值达到非参数最佳趋同率,直到一个由有条件定量函数基本构成结构的内在层面所决定的对数系数,而不是预测器的环境层面。因此,DQR能够根据有条件量化函数具有构成结构的假设来减轻对维度的诅咒。为了确定这些结果,我们分析神经网络复合函数的近似错误率,并表明错误率仅取决于组件功能的维度。我们把我们的一般结果应用到经常用于缓解其维度诅咒的一些重要统计模型,包括统一度模型的直径直径直值。我们清楚地描述了这些矩阵的直径直度模型的直径向性,我们清楚地描述了这些直径直度模型的精确度。