For the problem of delivering a package from a source node to a destination node in a graph using a set of drones, we study the setting where the movements of each drone are restricted to a certain subgraph of the given graph. We consider the objectives of minimizing the delivery time (problem DDT) and of minimizing the total energy consumption (problem DDC). For general graphs, we show a strong inapproximability result and a matching approximation algorithm for DDT as well as NP-hardness and a 2-approximation algorithm for DDC. For the special case of a path, we show that DDT is NP-hard if the drones have different speeds. For trees, we give optimal algorithms under the assumption that all drones have the same speed or the same energy consumption rate. The results for trees extend to arbitrary graphs if the subgraph of each drone is isometric.
翻译:对于使用一组无人驾驶飞机在图表中向目的地节点发送从源节点到目的地节点的包件问题,我们研究每个无人驾驶飞机的移动限制在特定图表的某个子集之内的设置。我们考虑尽量减少输送时间(滴滴涕问题)和尽量减少能源消耗总量(DDC问题)的目标。对于一般图表,我们显示了强烈的不协调结果,以及滴滴涕和DDC的近似算法和NP硬度的匹配和2对称算法。对于路径的特殊情况,我们表明,如果无人驾驶飞机的速度不同,DDT是硬的。对于树木,我们给出最佳算法的假设是,所有无人驾驶飞机的速度相同或能源消耗率相同。如果每架无人驾驶飞机的子图是测量的,则树木的结果扩大到任意的图表。