The ensemble Kalman inversion (EKI) for the solution of Bayesian inverse problems of type $y = A u +\varepsilon$, with $u$ being an unknown parameter, $y$ a given datum, and $\varepsilon$ measurement noise, is a powerful tool usually derived from a sequential Monte Carlo point of view. It describes the dynamics of an ensemble of particles $\{u^j(t)\}_{j=1}^J$, whose initial empirical measure is sampled from the prior, evolving over an artificial time $t$ towards an approximate solution of the inverse problem, with $t=1$ emulating the posterior, and $t\to\infty$ corresponding to the under-regularized minimum-norm solution of the inverse problem. Using spectral techniques, we provide a complete description of the deterministic dynamics of EKI and its asymptotic behavior in parameter space. In particular, we analyze the dynamics of naive EKI and mean-field EKI with a special focus on their time asymptotic behavior. Furthermore, we show that -- even in the deterministic case -- residuals in parameter space do not decrease monotonously in the Euclidean norm and suggest a problem-adapted norm, where monotonicity can be proved. Finally, we derive a system of ordinary differential equations governing the spectrum and eigenvectors of the covariance matrix. While the analysis is aimed at the EKI, we believe that it can be applied to understand more general particle-based dynamical systems.
翻译:用于解决巴伊西亚频谱反问题的共通性 Kalman 翻版 (EKI) 用于解决巴伊西亚频谱问题的共通性问题 $y = u ⁇ varepsilon$, 美元是一个未知参数, 美元是一个给定数据, 美元是一个测量噪音, 美元是一个强大的工具, 通常来自一个连续的蒙特卡洛点。 它描述了一个粒子共通性的动态 $ ⁇ u ⁇ j( t) ⁇ j=1 ⁇ J$。 它的初步经验性衡量标准是从先前的样本中采集的, 在一个人为的时间里, 美元是美元=1美元, 美元是一个未知的参数, 美元=1美元是一个未知的参数, 美元是给一个未知的, 美元=inftyl, 美元是来自不固定的 最低的 问题 。 使用光谱技术, 我们完整地描述了EKIKI的确定性动态及其在参数空间中的不稳性行为。 特别是, 我们分析天性 EKI 和平均 EKI 基的动态, 的动态, 特别侧重于 显示其时间的共性 的共性 的系统是最终的 。