Agents can base decisions made using reinforcement learning (RL) on a reward function. The selection of values for the learning algorithm parameters can, nevertheless, have a substantial impact on the overall learning process. In order to discover values for the learning parameters that are close to optimal, we extended our previously proposed genetic algorithm-based Deep Deterministic Policy Gradient and Hindsight Experience Replay approach (referred to as GA+DDPG+HER) in this study. On the robotic manipulation tasks of FetchReach, FetchSlide, FetchPush, FetchPick&Place, and DoorOpening, we applied the GA+DDPG+HER methodology. Our technique GA+DDPG+HER was also used in the AuboReach environment with a few adjustments. Our experimental analysis demonstrates that our method produces performance that is noticeably better and occurs faster than the original algorithm. We also offer proof that GA+DDPG+HER beat the current approaches. The final results support our assertion and offer sufficient proof that automating the parameter tuning procedure is crucial and does cut down learning time by as much as 57%.


翻译:使用强化学习( RL) 做出决策的代理商可以使用奖赏功能。 然而, 选择学习算法参数的值可以对整个学习过程产生重大影响。 为了发现接近最佳的学习参数值, 我们扩展了先前提议的基于遗传算法的深确定性政策梯度和重见体验重放方法( 称为 GA+DPG+HER) 。 关于FetchReach、 FetchSlide、 FetchPush、 FetchPick & Place 和 Door Openning 的机器人操纵任务, 我们应用了 GA+DDPG+HER 方法。 我们的GA+DDPG+HER 技术也在AuboReach 环境中使用, 进行了一些调整。 我们的实验分析表明, 我们的方法比原始算法要好得多, 并且比原始算法更快。 我们还提供了GA+DDPG+HGHERHER 胜过当前方法的证据。 最后的结果支持了我们的主张, 并提供足够证据, 证明参数自动调整程序十分关键, 并且确实将学习时间缩短了57%。

0
下载
关闭预览

相关内容

不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
1+阅读 · 2023年2月24日
Arxiv
0+阅读 · 2023年2月22日
A Multi-Objective Deep Reinforcement Learning Framework
VIP会员
相关资讯
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员