Adaptive mesh refinement (AMR) is necessary for efficient finite element simulations of complex physical phenomenon, as it allocates limited computational budget based on the need for higher or lower resolution, which varies over space and time. We present a novel formulation of AMR as a fully-cooperative Markov game, in which each element is an independent agent who makes refinement and de-refinement choices based on local information. We design a novel deep multi-agent reinforcement learning (MARL) algorithm called Value Decomposition Graph Network (VDGN), which solves the two core challenges that AMR poses for MARL: posthumous credit assignment due to agent creation and deletion, and unstructured observations due to the diversity of mesh geometries. For the first time, we show that MARL enables anticipatory refinement of regions that will encounter complex features at future times, thereby unlocking entirely new regions of the error-cost objective landscape that are inaccessible by traditional methods based on local error estimators. Comprehensive experiments show that VDGN policies significantly outperform error threshold-based policies in global error and cost metrics. We show that learned policies generalize to test problems with physical features, mesh geometries, and longer simulation times that were not seen in training. We also extend VDGN with multi-objective optimization capabilities to find the Pareto front of the tradeoff between cost and error.
翻译:为了对复杂的物理现象进行有效的有限要素模拟,必须对复杂的物理现象进行适应性网格改进(AMR),因为它根据对高分辨率或低分辨率的需要分配有限的计算预算,这种计算预算因时而异。我们提出一个新颖的AMR配方,作为全面合作的Markov游戏,其中每个要素都是根据当地信息作出改进和删除选择的独立代理人。我们设计了一个新的深层次多试剂强化学习算法,称为价值分解图图网(VDGN),它解决了AMR对MAL构成的两大核心挑战:代理人的创建和删除造成的事后信用分配,以及由于不同比例的多样化造成的非结构化观察。我们第一次展示了MARMR能够防止未来出现复杂特征的区域的改进。我们设计了一个全新的多剂强化算法,称为价值分解图图图网(VDGNGN),它解决了MAR政策在全球错误和成本度测量中大大超越了基于错误的门槛政策。我们发现,在现实性政策中,我们用更精确的模型来测试我们发现,在地理成本优化方面,我们也看到,我们发现,在实际的模型上,我们发现,在地理分析中也发现了不同的时间里,我们发现,在地理上,我们发现,在地理上,我们发现,在选择的模型中,在地理上,我们发现,我们找到了的模型中,我们发现,在地理上的方法是比较的模型中,我们发现,在地理上,我们发现,在地理上,在试验中,我们发现,在地理上的方法是比较的模型之间,我们探索了不同的方法之间,我们发现,在地理上的方法是比较,我们发现,我们发现,我们发现,在实验性能是比较了。