The multinomial logistic regression (MLR) model is widely used in statistics and machine learning. Stochastic gradient descent (SGD) is the most common approach for determining the parameters of a MLR model in big data scenarios. However, SGD has slow sub-linear rates of convergence. A way to improve these rates of convergence is to use manifold optimization. Along this line, stochastic natural gradient descent (SNGD), proposed by Amari, was proven to be Fisher efficient when it converged. However, SNGD is not guaranteed to converge and it is computationally too expensive for MLR models with a large number of parameters. Here, we propose a stochastic optimization method for MLR based on manifold optimization concepts which (i) has per-iteration computational complexity is linear in the number of parameters and (ii) can be proven to converge. To achieve (i) we establish that the family of joint distributions for MLR is a dually flat manifold and we use that to speed up calculations. S\'anchez-L\'opez and Cerquides have recently introduced convergent stochastic natural gradient descent (CSNGD), a variant of SNGD whose convergence is guaranteed. To obtain (ii) our algorithm uses the fundamental idea from CSNGD, thus relying on an independent sequence to build a bounded approximation of the natural gradient. We call the resulting algorithm dual stochastic natural gradient descent (DNSGD). By generalizing a result from Sunehag et al., we prove that DSNGD converges. Furthermore, we prove that the computational complexity of DSNGD iterations are linear on the number of variables of the model.


翻译:多重物流回归( MLR) 模式在统计和机器学习中被广泛使用。 在大数据情景中, Stochatic 梯度下降(SGD) 是确定 MLR 模型参数的最常见方法。 然而, SGD 具有缓慢的亚线性趋同率。 提高这些趋同率的方法是使用多重优化。 在这条线上, 由 Amari 提议的随机自然梯度下降( SNGD ) 已证明是有效的。 然而, SNGD 不保证会汇合, 并且对于具有大量参数的MLR模型来说, 计算成本太昂贵。 在这里, 我们建议基于 多重优化概念的 MLRLM 模型采用 Stochest 优化方法, 其(i) 其每升计算精度计算精度计算精度的精度的精度的精度。 Snal-LPlational, 其SNGD 的精度递性递增缩缩缩缩缩( C), 其自然递缩缩缩缩缩缩缩(CGNG) 的精度的精度的精度的精度最终变。

0
下载
关闭预览

相关内容

CC在计算复杂性方面表现突出。它的学科处于数学与计算机理论科学的交叉点,具有清晰的数学轮廓和严格的数学格式。官网链接:https://link.springer.com/journal/37
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
专知会员服务
50+阅读 · 2020年12月14日
【斯坦福大学】Gradient Surgery for Multi-Task Learning
专知会员服务
46+阅读 · 2020年1月23日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【OpenAI】深度强化学习关键论文列表
专知
11+阅读 · 2018年11月10日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年6月17日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【OpenAI】深度强化学习关键论文列表
专知
11+阅读 · 2018年11月10日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员