We propose a flexible yet interpretable model for high-dimensional data with time-varying second order statistics, motivated and applied to functional neuroimaging data. Motivated by the neuroscience literature, we factorize the covariances into sparse spatial and smooth temporal components. While this factorization results in both parsimony and domain interpretability, the resulting estimation problem is nonconvex. To this end, we design a two-stage optimization scheme with a carefully tailored spectral initialization, combined with iteratively refined alternating projected gradient descent. We prove a linear convergence rate up to a nontrivial statistical error for the proposed descent scheme and establish sample complexity guarantees for the estimator. We further quantify the statistical error for the multivariate Gaussian case. Empirical results using simulated and real brain imaging data illustrate that our approach outperforms existing baselines.
翻译:我们提出了一个灵活但可解释的高维数据模型,该模型具有时间变化的第二顺序统计数据,具有动力并应用于功能性神经成像数据。在神经科学文献的推动下,我们将共变因素纳入稀疏的空间和光滑的时间性组成部分。虽然这一因子化既造成偏差,又造成区域可解释性,但由此产生的估计问题是非共变的。为此,我们设计了一个两阶段优化计划,配有精心定制的光谱初始化,结合迭接精细化的交替梯度预测下行。我们证明,在拟议的下游方案中,线性趋同率高达非边际统计错误,并为估算器建立样本复杂性保证。我们进一步量化多变量高斯案例的统计错误。我们使用模拟和真实的脑成像数据得出的经验性结果表明,我们的方法超过了现有的基线。