In this paper, we introduce the tamed stochastic gradient descent method (TSGD) for optimization problems. Inspired by the tamed Euler scheme, which is a commonly used method within the context of stochastic differential equations, TSGD is an explicit scheme that exhibits stability properties similar to those of implicit schemes. As its computational cost is essentially equivalent to that of the well-known stochastic gradient descent method (SGD), it constitutes a very competitive alternative to such methods. We rigorously prove (optimal) sub-linear convergence of the scheme for strongly convex objective functions on an abstract Hilbert space. The analysis only requires very mild step size restrictions, which illustrates the good stability properties. The analysis is based on a priori estimates more frequently encountered in a time integration context than in optimization, and this alternative approach provides a different perspective also on the convergence of SGD. Finally, we demonstrate the usability of the scheme on a problem arising in a context of supervised learning.


翻译:在本文中,我们引入了用于优化问题的有节制的有节制的梯度下降法(TSGD),受有节制的Euler办法启发,这是在有节制的差别方程式中常用的一种方法,TSGD是一个明确的办法,具有与隐含的梯度下降法类似的稳定性特性,其计算成本基本上与众所周知的有节制的梯度下降法(SGD)的计算成本相当,因此它是一种非常有竞争力的替代方法。我们严格地证明(最优)在抽象的Hilbert空间上强烈交融目标函数的子线性组合。这项分析只需要非常温和的步骤大小限制,这说明良好的稳定性特性。这项分析基于在时间整合方面比优化时更经常遇到的事先估计,而这种备选方法也为SGD的趋同提供了不同的观点。最后,我们证明在监督学习过程中出现的问题上,该计划的实用性是可行的。

0
下载
关闭预览

相关内容

随机梯度下降,按照数据生成分布抽取m个样本,通过计算他们梯度的平均值来更新梯度。
专知会员服务
50+阅读 · 2020年12月14日
【斯坦福】凸优化圣经- Convex Optimization (附730pdf下载)
专知会员服务
220+阅读 · 2020年6月5日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
OpenAI丨深度强化学习关键论文列表
中国人工智能学会
17+阅读 · 2018年11月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
OpenAI丨深度强化学习关键论文列表
中国人工智能学会
17+阅读 · 2018年11月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员