Retrosynthetic planning is a critical task in organic chemistry which identifies a series of reactions that can lead to the synthesis of a target product. The vast number of possible chemical transformations makes the size of the search space very big, and retrosynthetic planning is challenging even for experienced chemists. However, existing methods either require expensive return estimation by rollout with high variance, or optimize for search speed rather than the quality. In this paper, we propose Retro*, a neural-based A*-like algorithm that finds high-quality synthetic routes efficiently. It maintains the search as an AND-OR tree, and learns a neural search bias with off-policy data. Then guided by this neural network, it performs best-first search efficiently during new planning episodes. Experiments on benchmark USPTO datasets show that, our proposed method outperforms existing state-of-the-art with respect to both the success rate and solution quality, while being more efficient at the same time.
翻译:重新合成规划是有机化学中的一项关键任务,它确定了一系列能够导致目标产品合成的反应。大量可能的化学变异使得搜索空间的大小非常大,即使对有经验的化学家来说,反合成规划也具有挑战性。然而,现有的方法要么需要以差异很大的方式推出昂贵的回报估计,要么需要优化搜索速度而不是质量。在本文中,我们提议了Retro*,一种以神经为基础的类似A*的算法,这种算法能够有效地找到高质量的合成路径。它将搜索维持为一棵和/或一棵树,并学习与政策无关的数据的神经搜索偏差。然后在这个神经网络的指导下,在新的规划过程中,它进行最高效的第一次搜索。关于USPTO数据集基准的实验表明,我们拟议的方法在成功率和解决方案质量两方面都超越了现有的最新技术,同时提高了效率。