Task and motion planning problems in robotics typically combine symbolic planning over discrete task variables with motion optimization over continuous state and action variables, resulting in trajectories that satisfy the logical constraints imposed on the task variables. Symbolic planning can scale exponentially with the number of task variables, so recent works such as PDDLStream have focused on optimistic planning with an incrementally growing set of objects and facts until a feasible trajectory is found. However, this set is exhaustively and uniformly expanded in a breadth-first manner, regardless of the geometric structure of the problem at hand, which makes long-horizon reasoning with large numbers of objects prohibitively time-consuming. To address this issue, we propose a geometrically informed symbolic planner that expands the set of objects and facts in a best-first manner, prioritized by a Graph Neural Network based score that is learned from prior search computations. We evaluate our approach on a diverse set of problems and demonstrate an improved ability to plan in large or difficult scenarios. We also apply our algorithm on a 7DOF robotic arm in several block-stacking manipulation tasks.
翻译:机器人的任务和动作规划问题通常将不同任务变量的象征性规划与连续状态和动作变量的动作优化结合起来,从而产生满足任务变量的逻辑限制的轨迹。 符号性规划可以随任务变量的数量成倍的缩放, 因此,像 PDDLStream 这样的近期工程侧重于乐观规划,在找到可行的轨迹之前,将一组天体和事实逐渐增长。 然而,这套工程以宽度第一的方式全面统一扩展,而不管问题所在的几何结构如何,它使大量物体的长方位推理变得过于耗时。 为了解决这个问题,我们提出了一个具有几何级信息的象征性规划器,以最佳第一的方式扩大成套物体和事实,由基于先前搜索计算所学得的图表神经网络评分确定优先次序。 我们评估了我们对于一系列不同问题的方法,并展示了在大或困难情况下进行规划的更高能力。 我们还在几个块式操纵任务中使用了7DF机器人臂的算法。