Agent-Based Models (ABM) are computational scenario-generators, which can be used to predict the possible future outcomes of the complex system they represent. To better understand the robustness of these predictions, it is necessary to understand the full scope of the possible phenomena the model can generate. Most often, due to high-dimensional parameter spaces, this is a computationally expensive task. Inspired by ideas coming from systems biology, we show that for multiple macroeconomic models, including an agent-based model and several Dynamic Stochastic General Equilibrium (DSGE) models, there are only a few stiff parameter combinations that have strong effects, while the other sloppy directions are irrelevant. This suggest an algorithm that efficiently explores the space of parameters by primarily moving along the stiff directions. We apply our algorithm to a medium-sized agent-based model, and show that it recovers all possible dynamics of the unemployment rate. The application of this method to Agent-based Models may lead to a more thorough and robust understanding of their features, and provide enhanced parameter sensitivity analyses. Several promising paths for future research are discussed.
翻译:以代理人为基础的模型(ABM)是计算假想生成器,可用于预测它们所代表的复杂系统未来可能产生的结果。为了更好地了解这些预测的稳健性,有必要了解模型能够产生的可能现象的全部范围。由于高维参数空间,这通常是计算成本高昂的任务。在系统生物学思想的启发下,我们显示,对于多种宏观经济模型,包括以代理人为基础的模型和若干动态一般平衡(DSGE)模型,只有几个具有强大效果的坚固参数组合,而其他偏差方向则无关紧要。这表明一种算法,它能有效地探索参数的空间,主要沿着僵硬的方向移动。我们把算法应用于一个中等规模的代理模型,并表明它能恢复所有可能存在的失业率动态。对以代理人为基础的模型应用这一方法,可以导致对其特征的更彻底、更强有力的理解,并提供强化的参数敏感性分析。讨论了未来研究的几条有希望的道路。