In many real-life situations, we are often faced with combinatorial problems under linear cost functions. In this paper, we propose a fast method for exactly enumerating a very large number of all lower cost solutions for various combinatorial problems. Our method is based on backtracking for a given decision diagram which represents the feasible solutions of a problem. The main idea is to memoize the intervals of cost bounds to avoid duplicate search in the backtracking process. Although existing state-of-the-art methods with dynamic programming requires a pseudo-polynomial time with the total cost values, it may take an exponential time when the cost values become large. In contrast, the computation time of the proposed method does not directly depend on the total cost values, but is bounded by the input and output size of the decision diagrams. Therefore, it can be much faster than the existing methods if the cost values are large but the output of the decision diagrams are well-compressed. Our experimental results show that, for some practical instances of the Hamiltonian path problem, we succeeded in exactly enumerating billions of all lower cost solutions in a few seconds, which is hundred or more times faster than existing methods. Our method can be regarded as a novel search algorithm which integrates the two classical techniques, branch-and-bound and dynamic programming. This method would have many applications in various fields, including operations research, data mining, statistical testing, hardware/software system design, etc.


翻译:在许多现实环境中,我们往往面临线性成本功能下的组合问题。在本文件中,我们提出一种快速的方法,精确地列出大量各种组合问题的所有较低成本解决方案。我们的方法基于对某决定图的回溯跟踪,该图代表了问题的可行解决方案。主要的想法是,将成本界限的间隔回溯到一起,以避免回溯跟踪过程中的重复搜索。尽管现有最先进的动态程序设计方法需要假的假球时间,总成本值,但当成本值大时,它可能需要一个指数化的时间。相比之下,拟议方法的计算时间并不直接取决于总成本值,而是受决定图的输入和输出大小的约束。因此,如果成本值大,但决定图的输出力受到很好的压缩,它可能比现有方法要快得多。我们的实验结果表明,对于汉密尔顿路问题的一些实际例子,我们成功地在几秒钟内计算出数十亿个低成本解决方案。 相比之下,拟议方法的计算时间并不直接取决于总成本值,而是取决于决定图的输入和输出大小。 因此,如果成本的计算方法比我们所认为的系统,那么, 的系统—— 模型的系统—— 系统—— 和模型的计算方法—— —— —— 和系统—— 系统—— 系统—— 系统—— 系统—— 系统—— —— 系统—— —— —— —— —— 系统—— 系统—— —— —— —— 系统—— 系统—— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— ——

0
下载
关闭预览

相关内容

【ACML2020】张量网络机器学习:最近的进展和前沿,109页ppt
专知会员服务
54+阅读 · 2020年12月15日
专知会员服务
60+阅读 · 2020年3月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月20日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员