Recent visual odometry (VO) methods incorporating geometric algorithm into deep-learning architecture have shown outstanding performance on the challenging monocular VO task. Despite encouraging results are shown, previous methods ignore the requirement of generalization capability under noisy environment and various scenes. To address this challenging issue, this work first proposes a novel optical flow network (PANet). Compared with previous methods that predict optical flow as a direct regression task, our PANet computes optical flow by predicting it into the discrete position space with optical flow probability volume, and then converting it to optical flow. Next, we improve the bundle adjustment module to fit the self-supervised training pipeline by introducing multiple sampling, ego-motion initialization, dynamic damping factor adjustment, and Jacobi matrix weighting. In addition, a novel normalized photometric loss function is advanced to improve the depth estimation accuracy. The experiments show that the proposed system not only achieves comparable performance with other state-of-the-art self-supervised learning-based methods on the KITTI dataset, but also significantly improves the generalization capability compared with geometry-based, learning-based and hybrid VO systems on the noisy KITTI and the challenging outdoor (KAIST) scenes.


翻译:最近将几何算法纳入深层学习架构的视觉测量(VO)方法显示,在具有挑战性的单流VO任务方面表现出色。尽管取得了令人鼓舞的成果,但以往的方法忽略了在噪音环境和各种场景下普遍化能力的要求。为解决这一具有挑战性的问题,这项工作首先提出了新的光学流网络(panet ) 。与以前预测光流作为直接回归任务的方法相比,我们的PANet通过预测光流进入具有光流概率的离散位置空间,然后将其转换为光流,从而计算光流。 其次,我们通过采用多种取样、自我感动初始化、动态阻隔动因子调整和雅各比基矩阵加权,改进捆绑式调整模块,以适应自我监督的培训管道。此外,为了提高深度估算准确性,新颖的标准化光度损失功能被推进。实验显示,拟议的系统不仅在KITTI数据集上实现了与其他最先进的自上可监督的学习方法的可比较性能,而且还大大改进了与基于几何、基于学习和混合的越野空间系统相比的总体化能力。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
26+阅读 · 2021年4月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
50+阅读 · 2020年2月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年2月20日
Arxiv
23+阅读 · 2021年3月4日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员