In the context of undirected Gaussian graphical models, we introduce three estimators based on elastic net penalty for the underlying dependence graph. Our goal is to estimate the sparse precision matrix, from which to retrieve both the underlying conditional dependence graph and the partial correlation graph. The first estimator is derived from the direct penalization of the precision matrix in the likelihood function, while the second from using conditional penalized regressions to estimate the precision matrix. Finally, the third estimator relies on a 2-stages procedure that estimates the edge set first and then the precision matrix elements. Through simulations we investigate the performances of the proposed methods on a large set of well-known network structures. Empirical results on simulated data show that the 2-stages procedure outperforms all other estimators both w.r.t. estimating the sparsity pattern in the graph and the edges' weights. Finally, using real-world data on US economic sectors, we estimate dependencies and show the impact of Covid-19 pandemic on the network strength.
翻译:在非定向高斯图形模型中,我们引入了基于基本依赖图弹性网罚款的三种估计值。我们的目标是估算稀少精密矩阵,从中提取基本有条件依赖图和部分相关图。第一个估计值来自对概率函数精确矩阵的直接处罚,而第二个来自使用有条件惩罚回归来估计精确矩阵。最后,第三个估计值依赖于一个两阶段程序,该程序首先估计边缘集,然后估计精确矩阵元素。我们通过模拟来调查在一大批众所周知的网络结构上拟议方法的性能。模拟数据的实证结果表明,2阶段程序超越了所有其他预测值,两者都是 w.r.t.,估计图表中的紧张度模式和边缘重量。最后,我们利用美国经济部门的实际情况数据估计了依赖性,并展示了Covid-19大流行病对网络实力的影响。