Conformance checking techniques allow us to quantify the correspondence of a process's execution, captured in event data, w.r.t., a reference process model. In this context, alignments have proven to be useful for calculating conformance statistics. However, for extensive event data and complex process models, the computation time of alignments is considerably high, hampering their practical use. Simultaneously, it suffices to approximate either alignments or their corresponding conformance value(s) for many applications. Recent work has shown that using subsets of the process model behavior leads to accurate conformance approximations. The accuracy of such an approximation heavily depends on the selected subset of model behavior. Thus, in this paper, we show that we can derive a priori error bounds for conformance checking approximation based on arbitrary activity sequences, independently of the given process model. Such error bounds subsequently let us select the most relevant subset of process model behavior for the alignment approximation. Experiments confirm that conformance approximation accuracy improves when using the proposed error bound approximation to guide the selection of relevant subsets of process model behavior.


翻译:符合性检查技术允许我们量化一个过程执行的对应性, 在事件数据中捕捉到, w.r.t., 一个参考过程模型。 在这方面, 校对已证明对有助于计算一致性统计。 但是, 对于广泛的事件数据和复杂的过程模型, 校对的计算时间相当高, 妨碍其实际使用。 同时, 它足以使许多应用程序的校正或相应的校正值相近。 最近的工作显示, 使用进程模型行为子集可以得出准确的符合性近似值。 这种近似的准确性在很大程度上取决于所选的模型行为组。 因此, 在本文中, 我们显示, 我们可以得出一个先验错误, 以基于任意活动序列的校准为根据, 独立于给定的进程模型模型。 这种误差随后会让我们选择最相关的进程模型行为组, 用于校正性近性。 实验证实, 当使用拟议的错误约束性近似性近度来指导选择相关的进程模型行为组时, 符合性准确性会提高。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
SIGIR2019 接收论文列表
专知
18+阅读 · 2019年4月20日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
SIGIR2019 接收论文列表
专知
18+阅读 · 2019年4月20日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员