This paper is about the ability and means to root-n consistently and efficiently estimate linear, mean square continuous functionals of a high dimensional, approximately sparse regression. Such objects include a wide variety of interesting parameters such as the covariance between two regression residuals, a coefficient of a partially linear model, an average derivative, and the average treatment effect. We give lower bounds on the convergence rate of estimators of such objects and find that these bounds are substantially larger than in a low dimensional, semiparametric setting. We also give automatic debiased machine learners that are $1/\sqrt{n}$ consistent and asymptotically efficient under minimal conditions. These estimators use no cross-fitting or a special kind of cross-fitting to attain efficiency with faster than $n^{-1/4}$ convergence of the regression. This rate condition is substantially weaker than the product of convergence rates of two functions being faster than $1/\sqrt{n},$ as required for many other debiased machine learners.


翻译:本文涉及如何持续和高效地根根估算线性、平均平方连续功能的直线性、 高维、 低回归度、 低回归度。 这些对象包括许多有趣的参数, 如两个回归残留物的共差、 部分线性模型的系数、 平均衍生物 和平均处理效果。 我们对此类天体的测算器的趋同率设定了较低的界限, 并发现这些界限大大大于一个低维、 半参数设置中的界限。 我们还给自动脱差机器学习者提供$的自动脱差, 在最低条件下为$/\ sqrt{n} 一致且非现性效率。 这些估计者没有使用交叉配置或特殊类型的交叉配置来达到效率, 其回归率的趋同速度比 $\-1/4} 美元 。 这一比率条件大大弱于两个函数的趋同率比 $/\ qrt{n} 。 对于许多其他被贬损的机器学习者来说, 需要1/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年5月19日
Arxiv
3+阅读 · 2018年10月18日
Arxiv
8+阅读 · 2018年5月15日
Arxiv
3+阅读 · 2016年2月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员