Deep Learning methods are renowned for their performances, yet their lack of interpretability prevents them from high-stakes contexts. Recent model agnostic methods address this problem by providing post-hoc interpretability methods by reverse-engineering the model's inner workings. However, in many regulated fields, interpretability should be kept in mind from the start, which means that post-hoc methods are valid only as a sanity check after model training. Interpretability from the start, in an abstract setting, means posing a set of soft constraints on the model's behavior by injecting knowledge and annihilating possible biases. We propose a Multicriteria technique that allows to control the feature effects on the model's outcome by injecting knowledge in the objective function. We then extend the technique by including a non-linear knowledge function to account for more complex effects and local lack of knowledge. The result is a Deep Learning model that embodies interpretability from the start and aligns with the recent regulations. A practical empirical example based on credit risk, suggests that our approach creates performant yet robust models capable of overcoming biases derived from data scarcity.


翻译:深层学习方法因其表现而出名,然而其缺乏可解释性却使其无法在高空环境中发挥作用。最近的模型不可知性方法通过逆向设计模型的内部工作来提供超常解释方法来解决这个问题。然而,在许多规范领域,从一开始就应铭记可解释性,这意味着在模式培训之后,后热方法只能作为理智检查才有效。从一开始,在抽象环境中,其解释性意味着通过注入知识和消除可能的偏差,对模型的行为构成一系列软约束。我们提出了一个多标准技术,允许通过在目标功能中注入知识来控制对模型结果的特征影响。然后,我们通过纳入非线性知识功能来扩展技术,以考虑到更为复杂的影响和当地缺乏知识的情况。结果是一个深层次学习模型,体现从一开始的可解释性,并与最近的规则保持一致。基于信用风险的一个实际经验实例表明,我们的方法创造了能够克服数据稀缺所产生的偏差的性强模型。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
【UBC】高级机器学习课程,Advanced Machine Learning
专知会员服务
26+阅读 · 2021年1月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
157+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
49+阅读 · 2021年5月9日
Arxiv
14+阅读 · 2020年12月17日
Interpretable Active Learning
Arxiv
3+阅读 · 2018年6月24日
Arxiv
16+阅读 · 2018年2月7日
VIP会员
相关VIP内容
【UBC】高级机器学习课程,Advanced Machine Learning
专知会员服务
26+阅读 · 2021年1月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
157+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员