Adaptive Multi-Agent Systems (AMAS) transform dynamic problems into problems of local cooperation between agents. We present smapy, an ensemble based AMAS implementation for mobility prediction, whose agents are provided with machine learning models in addition to their cooperation rules. With a detailed methodology, we propose a framework to transform a classification problem into a cooperative tiling of the input variable space. We show that it is possible to use linear classifiers for online non-linear classification on three benchmark toy problems chosen for their different levels of linear separability, if they are integrated in a cooperative Multi-Agent structure. The results obtained show a significant improvement of the performance of linear classifiers in non-linear contexts in terms of classification accuracy and decision boundaries, thanks to the cooperative approach.
翻译:多机构适应系统(AMAS)将动态问题转化成代理商之间的当地合作问题。我们展示了基于混合的AMAS实施流动预测的混合模型,其代理商除了合作规则外还获得机器学习模型。我们提出了一个详细的方法,建议了一个框架,将分类问题转化为投入可变空间的合作式平铺。我们表明,如果将线性分类器纳入一个合作性多机构结构,则有可能使用线性分类器进行在线非线性分类,用于为其不同水平的线性分离选择的三种基准性玩具的在线非线性分类,只要它们被纳入合作性多机构结构。取得的结果表明,由于合作性做法,线性分类器在分类准确性和决定界限方面在非线性背景方面表现显著改善。