Dimensionality reduction is an important preprocessing step of the hyperspectral images classification (HSI), it is inevitable task. Some methods use feature selection or extraction algorithms based on spectral and spatial information. In this paper, we introduce a new methodology for dimensionality reduction and classification of HSI taking into account both spectral and spatial information based on mutual information. We characterise the spatial information by the texture features extracted from the grey level cooccurrence matrix (GLCM); we use Homogeneity, Contrast, Correlation and Energy. For classification, we use support vector machine (SVM). The experiments are performed on three well-known hyperspectral benchmark datasets. The proposed algorithm is compared with the state of the art methods. The obtained results of this fusion show that our method outperforms the other approaches by increasing the classification accuracy in a good timing. This method may be improved for more performance Keywords: hyperspectral images; classification; spectral and spatial features; grey level cooccurrence matrix; GLCM; mutual information; support vector machine; SVM.
翻译:降低尺寸是超光谱图像分类(HSI)的一个重要预处理步骤,这是不可避免的任务。有些方法使用基于光谱和空间信息的特征选择或提取算法。在本文中,我们引入了一种新的方法,以基于相互信息的光谱和空间信息为基础,对高光谱图像进行维度减少和分类。我们用从灰度共生矩阵(GLCM)中提取的纹理特征来描述空间信息;我们使用同质、对比、相近和能量。在分类中,我们使用支持矢量机(SVM)。在三个众所周知的超光谱基准数据集上进行了实验。拟议的算法与最新方法进行比较。这种混合的结果表明,我们的方法通过提高高光谱图像、分类、光谱和空间特征、灰度共生关系矩阵、GLCM;相互信息;支持矢量机;SVM。