Magnetic resonance imaging (MRI) with high resolution (HR) provides more detailed information for accurate diagnosis and quantitative image analysis. Despite the significant advances, most existing super-resolution (SR) reconstruction network for medical images has two flaws: 1) All of them are designed in a black-box principle, thus lacking sufficient interpretability and further limiting their practical applications. Interpretable neural network models are of significant interest since they enhance the trustworthiness required in clinical practice when dealing with medical images. 2) most existing SR reconstruction approaches only use a single contrast or use a simple multi-contrast fusion mechanism, neglecting the complex relationships between different contrasts that are critical for SR improvement. To deal with these issues, in this paper, a novel Model-Guided interpretable Deep Unfolding Network (MGDUN) for medical image SR reconstruction is proposed. The Model-Guided image SR reconstruction approach solves manually designed objective functions to reconstruct HR MRI. We show how to unfold an iterative MGDUN algorithm into a novel model-guided deep unfolding network by taking the MRI observation matrix and explicit multi-contrast relationship matrix into account during the end-to-end optimization. Extensive experiments on the multi-contrast IXI dataset and BraTs 2019 dataset demonstrate the superiority of our proposed model.
翻译:高分辨率磁共振成像(MRI)为准确诊断和定量图像分析提供了更详细的信息。尽管取得了重大进步,但大多数现有的医学图像超分辨率(SR)重建网络都有两个缺陷:(1) 设计成黑箱原则,因此缺乏足够的解释性和进一步限制其实际应用; 解释性神经网络模型具有重大意义,因为这些模型在处理医疗图像时提高了临床实践中所需的信任度。 (2) 大多数现有的SR重建方法仅使用单一对比度,或使用简单的多相调聚合机制,忽视了对SR改进至关重要的不同对比之间的复杂关系。为了处理这些问题,本文件提出了用于医学图像SR重建的新型模型指导可解释深度重叠网络(MGDUN)。模型指导性图像重建方法解决了在处理医疗图像时人工设计的目标功能重建HR MRI。我们展示了如何将迭代MGDUN算演算法演进一个新颖的模型导深层网络,将MRI观测矩阵和对SR改进至关重要的不同对比关系之间的复杂关系关系关系关系。在本文件中,提出了用于医学图像模型模型化的20-CRA级模型,并在数据演示期间,将拟议的BRAMRMSMMMMDMDMDMDMDMDMDMDMD。