We consider a discrete distribution estimation problem under a local differential privacy (LDP) constraint in the presence of shared randomness. By exploiting the shared randomness, we suggest a new method for constructing LDP schemes which achieve the exactly optimal privacy-utility trade-off (PUT) with the communication cost of less than or equal to the input data size for any privacy regime. The main idea is to decompose a block design scheme by Park et al. (2023), based on the combinatorial concept called resolution. The LDP scheme decomposed from a block design scheme is called a resolution of the block design scheme, and it achieves the same PUT as the original block design scheme while requiring a less communication cost. We provide two resolutions of an exactly PUT-optimal block design scheme, called the Baranyai's resolution and the cyclic shift resolution, both requiring the communication cost of less than or equal to the input data size. In particular, we show that the Baranyai's resolution achieves the minimum communication cost among all the PUT-optimal resolutions of block design schemes. One drawback of the Baranyai's resolution is that it can be obtained through a recursive algorithm in general. In contrast, the cyclic shift resolution has an explicit structure, but its communication cost can be larger than that of Baranyai's resolution. To complement this, we also suggest resolutions of other block design schemes achieving the optimal PUT for some privacy budgets, which require the minimum communication cost as the Baranyai's resolution and have explicit structures as the cyclic shift resolution.
翻译:暂无翻译