Proper orthogonal decomposition (POD) allows reduced-order modeling of complex dynamical systems at a substantial level, while maintaining a high degree of accuracy in modeling the underlying dynamical systems. Advances in machine learning algorithms enable learning POD-based dynamics from data and making accurate and fast predictions of dynamical systems. In this paper, we leverage the recently proposed heavy-ball neural ODEs (HBNODEs) [Xia et al. NeurIPS, 2021] for learning data-driven reduced-order models (ROMs) in the POD context, in particular, for learning dynamics of time-varying coefficients generated by the POD analysis on training snapshots generated from solving full order models. HBNODE enjoys several practical advantages for learning POD-based ROMs with theoretical guarantees, including 1) HBNODE can learn long-term dependencies effectively from sequential observations and 2) HBNODE is computationally efficient in both training and testing. We compare HBNODE with other popular ROMs on several complex dynamical systems, including the von K\'{a}rm\'{a}n Street flow, the Kurganov-Petrova-Popov equation, and the one-dimensional Euler equations for fluids modeling.
翻译:在本文中,我们利用最近提议的重球神经值(HBNODEs)[Xia et al. NeurIPS, 2021] 进行大量复杂动态系统减序建模,同时在模拟基本动态系统时保持高度的精确度;机器学习算法的进展使得能够从数据中学习基于POD的动态动态,并对动态系统作出准确和快速的预测;在本文件中,我们利用最近提出的重球神经值(HBUNODEs)[Xia et al. NeurIPS, 2021] 来学习POD背景下的数据驱动减序模型(ROMs),特别是学习POD分析在解决全顺序模型产生的培训快照上产生的时间变化系数动态。 HBNODE在学习基于POD的ROMs方面享有一些实际优势,并有理论保障,包括:(1) HBNODE可以有效地从顺序观测中学习长期依赖性;2 HBNODE在培训和测试中都具有计算效率。我们将HNUNDE与若干复杂的动态系统上的其他流行的ROMODs,包括v Keva {rml\\'plan-stol-stal commals-stal-stilvalal-stalpalpaldromalslal-stal-stalpalpaldaldalpalpalpalpalpalpaldalpalpalpaldaldaldaldaldaldaldaldaldaldaldaldalpaldaldaldaldaldald.</s>