We present a novel application of neural networks to design improved mixing elements for single-screw extruders. Specifically, we propose to use neural networks in numerical shape optimization to parameterize geometries. Geometry parameterization is crucial in enabling efficient shape optimization as it allows for optimizing complex shapes using only a few design variables. Recent approaches often utilize CAD data in conjunction with spline-based methods where the spline's control points serve as design variables. Consequently, these approaches rely on the same design variables as specified by the human designer. While this choice is convenient, it either restricts the design to small modifications of given, initial design features - effectively prohibiting topological changes - or yields undesirably many design variables. In this work, we step away from CAD and spline-based approaches and construct an artificial, feature-dense yet low-dimensional optimization space using a generative neural network. Using the neural network for the geometry parameterization extends state-of-the-art methods in that the resulting design space is not restricted to user-prescribed modifications of certain basis shapes. Instead, within the same optimization space, we can interpolate between and explore seemingly unrelated designs. To show the performance of this new approach, we integrate the developed shape parameterization into our numerical design framework for dynamic mixing elements in plastics extrusion. Finally, we challenge the novel method in a competitive setting against current free-form deformation-based approaches and demonstrate the method's performance even at this early stage.
翻译:我们展示了神经网络的新应用,用于为单层挤压器设计经改进的混合元素。 具体地说, 我们提议使用数字形状的神经网络, 以数字形状优化来参数化地貌。 几何参数化对于实现高效形状优化至关重要, 因为它只允许使用几个设计变量来优化复杂形状。 最近的方法经常使用基于螺纹的螺旋控制点作为设计变量的CAD数据与基于样板的方法相结合。 因此, 这些方法依赖于与人类设计师指定的设计变量相同的设计变量。 虽然这种选择很方便, 但它要么将设计限制于对给定的初始设计功能进行小的修改 — 有效禁止表层变化, 或产生不理想的很多设计变量。 在此工作中, 我们远离 CAD 和基于样板化的方法, 并用一个有色调的神经网络来构建一个人工的、 地貌感知但低维度的优化空间空间空间。 使用神经网络来测量参数化, 将由此产生的设计空间的状态化方法扩展到用户描述某些基础形状的修改。 相反, 在早期的优化空间结构化空间中, 我们的外观中, 展示了我们当前构造的外观的外观的外观的外观, 我们的外观的外观的外观, 我们的外观的外观的外观的外观的外观的外观, 展示了我们的外观的外观的外观的外观的外观的外观的外观的外观的外观的外观的外观。