Green's function plays a significant role in both theoretical analysis and numerical computing of partial differential equations (PDEs). However, in most cases, Green's function is difficult to compute. The troubles arise in the following three folds. Firstly, compared with the original PDE, the dimension of Green's function is doubled, making it impossible to be handled by traditional mesh-based methods. Secondly, Green's function usually contains singularities which increase the difficulty to get a good approximation. Lastly, the computational domain may be very complex or even unbounded. To override these problems, we leverage the fundamental solution, boundary integral method and neural networks to develop a new method for computing Green's function with high accuracy in this paper. We focus on Green's function of Poisson and Helmholtz equations in bounded domains, unbounded domains. We also consider Poisson equation and Helmholtz domains with interfaces. Extensive numerical experiments illustrate the efficiency and the accuracy of our method for solving Green's function. In addition, we also use the Green's function calculated by our method to solve a class of PDE, and also obtain high-precision solutions, which shows the good generalization ability of our method on solving PDEs.
翻译:绿色的功能在理论分析和计算部分差异方程式( PDEs) 的计算中起着重要作用。 但是, 在多数情况下, 绿色的功能很难计算。 问题出现于以下三个折叠中。 首先, 与最初的 PDE 相比, Green 函数的维度翻了一番, 这使得它无法由传统的网状法处理。 其次, Green 的功能通常包含奇特性, 这增加了获得良好近似的困难。 最后, 计算域可能非常复杂, 甚至可能没有限制。 为了克服这些问题, 我们利用基本解决方案、 边界集成法和神经网络来开发一个新的方法, 在本文中非常精确地计算 Green 函数。 我们集中关注Green 的Poisson 和 Helmholtz 等方程式在封闭域、 不受约束的域中的功能。 我们还考虑Poisson 方程式和 Helmholtz 域域与界面的特性。 广泛的数字实验显示了我们解决 Green 功能的方法的效率和准确性。 此外, 我们还使用由我们的方法计算的绿色解决方案功能, 来显示我们如何解决一般方法。