We present a novel technique to automatically colorize grayscale images that combine the U-Net model and Fusion Layer features. This approach allows the model to learn the colorization of images from pre-trained U-Net. Moreover, the Fusion layer is applied to merge local information results dependent on small image patches with global priors of an entire image on each class, forming visually more compelling colorization results. Finally, we validate our approach with a user study evaluation and compare it against state-of-the-art, resulting in improvements.
翻译:我们展示了一种将U-Net模型和融合层特性结合起来的灰色图像自动颜色化的新技术。 这种方法使模型能够从培训前的U- Net 中学习图像的颜色化。 此外, 融合层还用于将局部信息结果与每个班级整个图像的小型图像补丁和全图像的全球前科结合起来, 从而产生更引人注目的颜色化结果。 最后, 我们用用户研究评估来验证我们的方法, 并将其与最新技术进行比较, 从而导致改进。