This work proposes a fast iterative method for local steric Poisson--Boltzmann (PB) theories, in which the electrostatic potential is governed by the Poisson's equation and ionic concentrations satisfy equilibrium conditions. To present the method, we focus on a local steric PB theory derived from a lattice-gas model, as an example. The advantages of the proposed method in efficiency are achieved by treating ionic concentrations as scalar implicit functions of the electrostatic potential, though such functions are only numerically achievable. The existence, uniqueness, boundness, and smoothness of such functions are rigorously established. A Newton iteration method with truncation is proposed to solve a nonlinear system discretized from the generalized PB equations. The existence and uniqueness of the solution to the discretized nonlinear system are established by showing that it is a unique minimizer of a constructed convex energy. Thanks to the boundness of ionic concentrations, truncation bounds for the potential are obtained by using the extremum principle. The truncation step in iterations is shown to be energy and error decreasing. To further speed-up computations, we propose a novel precomputing-interpolation strategy, which is applicable to other local steric PB theories and makes the proposed methods for solving steric PB theories as efficient as for solving the classical PB theory. Analysis on the Newton iteration method with truncation shows local quadratic convergence for the proposed numerical methods. Applications to realistic biomolecular solvation systems reveal that counterions with steric hindrance stratify in an order prescribed by the parameter of ionic valence-to-volume ratio. Finally, we remark that the proposed iterative methods for local steric PB theories can be readily incorporated in well-known classical PB solvers.
翻译:这项工作为本地静态 Poisson- Boltzmann (PB) 理论提出了一个快速迭接方法, 静电潜力由 Poisson 的方程式和离子浓度满足平衡条件来调节。 要展示这个方法, 我们将焦点放在从一个 lattice- gas 模型中产生的本地静态 PB 理论上。 这个方法在效率方面的优点是通过将离散的静态浓度作为电静潜能的伸缩隐含功能来实现的, 尽管这些函数只能从数字上可以实现。 这种函数的存在、 独特性、 约束性和 平滑度得到了严格的确立。 牛顿 分子递增率法建议用来解决与通用 PB 等离散的非线性系统。 通过显示离散的非线性 PB 模型的解决方案的存在和独特性。 由于电离子浓度的内嵌入, 电离子电解的电解内电解内电解线, 可以通过使用 extermremoum 原则获得这种潜力的内存、 直流- 直流- 直流- 解- 和直径解解 解的电解法 向导-, 向导- 向导- 向导到电解算法,, 向导- 向导- 向导- 向导- 路路路路流- 路路流- 路流- 路流- 路流- 路路路流- 向- 向- 向- 向- 路流- 向- 向- 向- 路算法 路路算法 向- 向- 向- 向- 向- 向- 向- 向- 向- 向- 向- 向- 向- 向- 向- 向- 向- 向- 向- 向- 向- 向- 向- 向- 向- 向- 向- 向- 向- 向- 向- 向- 向- 向- 向- 向- 向- 向- 向- 向- 向- 向- 向- 向- 向- 向- 向- 向- 向- 向- 向