An important class of nonlinear weighted least-squares problems arises from the assimilation of observations in atmospheric and ocean models. In variational data assimilation, inverse error covariance matrices define the weighting matrices of the least-squares problem. For observation errors, a diagonal matrix (i.e., uncorrelated errors) is often assumed for simplicity even when observation errors are suspected to be correlated. While accounting for observationerror correlations should improve the quality of the solution, it also affects the convergence rate of the minimization algorithms used to iterate to the solution. If the minimization process is stopped before reaching full convergence, which is usually the case in operational applications, the solution may be degraded even if the observation-error correlations are correctly accounted for. In this article, we explore the influence of the observation-error correlation matrix (R) on the convergence rate of a preconditioned conjugate gradient (PCG) algorithm applied to a one-dimensional variational data assimilation (1D-Var) problem. We design the idealised 1D-Var system to include two key features used in more complex systems: we use the background error covariance matrix (B) as a preconditioner (B-PCG); and we use a diffusion operator to model spatial correlations in B and R. Analytical and numerical results with the 1D-Var system show a strong sensitivity of the convergence rate of B-PCG to the parameters of the diffusion-based correlation models. Depending on the parameter choices, correlated observation errors can either speed up or slow down the convergence. In practice, a compromise may be required in the parameter specifications of B and R between staying close to the best available estimates on the one hand and ensuring an adequate convergence rate of the minimization algorithm on the other.
翻译:大气和海洋模型观测结果的同化产生了重要的非线性加权最小平方问题。 在变式数据同化中, 反差共差矩阵定义了最小平方问题的权重矩阵。 对于观察错误, 往往假设对角矩阵( 与非线性有关的差错) 简单化, 即使怀疑观测错误是相互关联的。 观察者关系计算应提高解决方案的质量, 也会影响用于循环的最小化参数与解决方案的趋同率的趋同率的趋同率的趋同率的趋同率。 如果最小化进程在达到完全趋同之前停止, 通常是在操作应用程序中的情况, 逆差共差矩阵决定了最小化矩阵的权重矩阵。 对于观察者- 机性关系矩阵( R), 我们探索观察者- 模型- 关联矩阵( R) 的趋同源性变差率( D- Var) 算算算算法适用于单维基调解变差数据同化率( 1D- Var) 。 我们设计理想化 1D- Var 系统, 在更精确化的趋同化的趋同性变化的趋同性比较的比 估测算法中, 我们使用一个最精确的比的比 的比 的比 使用一个最精确化的比的比 的比 的比 的比值, 使用一个比 使用一个比的比的比, 的比 的比 的比 的比 的比 的比 的比 使用一个比 。