With continuous outcomes, the average causal effect is typically defined using a contrast of expected potential outcomes. However, in the presence of skewed outcome data, the expectation may no longer be meaningful. In practice the typical approach is to either "ignore or transform" - ignore the skewness altogether or transform the outcome to obtain a more symmetric distribution, although neither approach is entirely satisfactory. Alternatively the causal effect can be redefined as a contrast of median potential outcomes, yet discussion of confounding-adjustment methods to estimate this parameter is limited. In this study we described and compared confounding-adjustment methods to address this gap. The methods considered were multivariable quantile regression, an inverse probability weighted (IPW) estimator, weighted quantile regression and two little-known implementations of g-computation for this problem. Motivated by a cohort investigation in the Longitudinal Study of Australian Children, we conducted a simulation study that found the IPW estimator, weighted quantile regression and g-computation implementations minimised bias when the relevant models were correctly specified, with g-computation additionally minimising the variance. These methods provide appealing alternatives to the common "ignore or transform" approach and multivariable quantile regression, enhancing our capability to obtain meaningful causal effect estimates with skewed outcome data.
翻译:在连续的结果中,平均因果效应的定义通常是使用与预期潜在结果的对比来界定平均因果效应。然而,在存在偏差的结果数据的情况下,预期可能不再有意义。在实践上,典型的方法要么是“光度或变换”――完全忽略偏差,要么完全忽略结果,或者改变结果,以获得更对称分布,尽管这两种方法都不完全令人满意。否则,因果效应可以重新定义为中位潜在结果的对比,然而,关于估算该参数的调整方法的讨论是有限的。在本研究中,我们描述并比较了弥补这一差距的调整方法。所考虑的方法是:多可变的量回归、反差加权偏差加权加权(IPW)的偏差加权(IPW)的偏差加权(IPW)的偏差(IPW)偏差(IPW)的偏差(IPW)的偏差、加权四分率回归和两种鲜为人所知的对该问题的计算方法。在澳大利亚儿童的纵向研究中,我们进行了一项模拟研究,研究发现IPW的估测算、加权平等回归回归和G对数值的计算结果的落实时,在相关模型正确确定替代品时尽量减少的偏差时,这些方法提供了对等结果的反差,这些推导方法。这些方法提供了对等同的推导,以增进的、最小性结果,从而提高我们的共同推算。这些方法“使共同的后推算结果的后推至最小性结果的后,使结果的后推至最小性推。