We introduce a new self-supervised task, NSA, for training an end-to-end model for anomaly detection and localization using only normal data. NSA uses Poisson image editing to seamlessly blend scaled patches of various sizes from separate images. This creates a wide range of synthetic anomalies which are more similar to natural sub-image irregularities than previous data-augmentation strategies for self-supervised anomaly detection. We evaluate the proposed method using natural and medical images. Our experiments with the MVTec AD dataset show that a model trained to localize NSA anomalies generalizes well to detecting real-world a priori unknown types of manufacturing defects. Our method achieves an overall detection AUROC of 97.2 outperforming all previous methods that learn from scratch without pre-training datasets.
翻译:我们引入了一种新的自我监督任务,即国家安全局,用于培训仅使用正常数据的异常检测和本地化端到端模式。国家安全局使用Poisson图像编辑来无缝地混合不同图像中不同大小的缩放补丁。这造成了一系列与自然次图像异常相近的合成异常现象,这些异常现象比以往自我监督异常检测的数据强化战略更为相似。我们用自然和医疗图像评估了拟议方法。我们用MVTec AD数据集进行的实验表明,一个经过培训的将国家安全局异常现象本地化的模型能够很好地发现真实世界中一种先天性未知的制造缺陷。我们的方法实现了对97.2的AUROC的全面检测,超过了以往在没有培训前数据集的情况下从刮中学习的所有方法。