Deepfake techniques have been used maliciously, resulting in strong research interests in developing Deepfake detection methods. Deepfake often manipulates the video content by tampering with some facial parts. However, this manipulation usually breaks the consistency among facial parts, e.g., Deepfake may change smiling lips to upset, but the eyes are still smiling. Existing works propose to spot inconsistency on some specific facial parts (e.g., lips), but they may perform poorly if new Deepfake techniques focus on the specific facial parts used by the detector. Thus, this paper proposes a new Deepfake detection model, DeepfakeMAE, which can utilize the consistencies among all facial parts. Specifically, given a real face image, we first pretrain a masked autoencoder to learn facial part consistency by randomly masking some facial parts and reconstructing missing areas based on the remaining facial parts. Furthermore, to maximize the discrepancy between real and fake videos, we propose a novel model with dual networks that utilize the pretrained encoder and decoder, respectively. 1) The pretrained encoder is finetuned for capturing the overall information of the given video. 2) The pretrained decoder is utilized for distinguishing real and fake videos based on the motivation that DeepfakeMAE's reconstruction should be more similar to a real face image than a fake one. Our extensive experiments on standard benchmarks demonstrate that DeepfakeMAE is highly effective and especially outperforms the previous state-of-the-art method by 3.1% AUC on average in cross-dataset detection.


翻译:深假技术被恶意使用,导致开发深假检测方法的研究兴趣极大。 深假技术常常通过篡改某些面部部分来操纵视频内容。 但是, 这种操纵通常会打破面部部分的一致性, 例如, 深假可能改变微笑的嘴唇, 但眼睛仍然在微笑。 现有的工程提议在某些具体的面部部分( 如嘴唇) 上发现不一致之处, 但是如果新的深假技术侧重于探测器使用的特定面部部分, 可能会表现不妙。 因此, 本文建议一个新的深假检测模型, 深假MAE, 它可以利用所有面部部分的组合。 具体地说, 以真实面部图像为背景, 我们首先准备一个蒙面部的蒙面部一致性, 根据其余的面部部分重建缺失区域。 此外, 为了尽可能扩大真实和假视频之间的差异, 我们提出一个双向网络的新模型, 使用预先训练的解码器和解码器。 1 事先经过训练的解码模型是精确的, 采集整个面部图像的深度的深度模型, 特别要用真实的模型进行模拟的模拟的模拟的模拟的模拟, 。</s>

0
下载
关闭预览

相关内容

专知会员服务
61+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
27+阅读 · 2021年11月11日
Deep Face Recognition: A Survey
Arxiv
18+阅读 · 2019年2月12日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员