Accurately modeling contact behaviors for real-world, near-rigid materials remains a grand challenge for existing rigid-body physics simulators. This paper introduces a data-augmented contact model that incorporates analytical solutions with observed data to predict the 3D contact impulse which could result in rigid bodies bouncing, sliding or spinning in all directions. Our method enhances the expressiveness of the standard Coulomb contact model by learning the contact behaviors from the observed data, while preserving the fundamental contact constraints whenever possible. For example, a classifier is trained to approximate the transitions between static and dynamic frictions, while non-penetration constraint during collision is enforced analytically. Our method computes the aggregated effect of contact for the entire rigid body, instead of predicting the contact force for each contact point individually, maintaining same simulation speed as the number of contact points increases for detailed geometries. Supplemental video: https://shorturl.at/eilwX Keywords: Physics Simulation Algorithms, Dynamics Learning, Contact Learning
翻译:精确地模拟真实世界、近硬材料的接触行为,对于现有的僵硬身体物理模拟器来说,对于现有的僵硬身体物理模拟器来说,这仍然是一项巨大的挑战。本文采用了数据强化的接触模式,该模式将分析解决方案与观察到的数据结合起来,以预测三维接触脉冲,这可能导致三维接触脉冲在所有方向上产生僵硬的体跳动、滑动或旋转。我们的方法通过从观察到的数据中学习接触行为来增强标准库伦接触模式的清晰度,同时尽可能保留基本的接触限制。例如,对分类人员进行了培训,以估计静态和动态摩擦之间的转变,同时对碰撞期间的非穿透性限制进行了分析。我们的方法计算了整个僵硬身体接触的总体效应,而不是单方预测每个联络点的接触力,同时保持了与详细地理气象学联络点数量增加相同的模拟速度。补充视频:https://shorturl.at/eilwX Keywwwwwwwwwwwwwwwwwwwwwwwwwwwords:phords:物理模拟模拟测深词:Simmalmulation Algorithms, ALgorithms, lem, lem, lem, lemlemlemolding, lemolding, lection, clection, lection, lection, lection.