Many dynamical systems in the real world are naturally described by latent states with intrinsic orderings, such as "ally", "neutral", and "enemy" relationships in international relations. These latent states manifest through countries' cooperative versus conflictual interactions over time. State-space models (SSMs) explicitly relate the dynamics of observed measurements to transitions in latent states. For discrete data, SSMs commonly do so through a state-to-action emission matrix and a state-to-state transition matrix. This paper introduces the Ordered Matrix Dirichlet (OMD) as a prior distribution over ordered stochastic matrices wherein the discrete distribution in the kth row stochastically dominates the (k+1)th, such that probability mass is shifted to the right when moving down rows. We illustrate the OMD prior within two SSMs: a hidden Markov model, and a novel dynamic Poisson Tucker decomposition model tailored to international relations data. We find that models built on the OMD recover interpretable ordered latent structure without forfeiting predictive performance. We suggest future applications to other domains where models with stochastic matrices are popular (e.g., topic modeling), and publish user-friendly code.
翻译:现实世界中许多动态系统自然被具有内在定序的潜伏国家所描述,如国际关系中的“ 绝对”、“ 中性” 和“ 敌人” 关系。 这些潜伏国家通过各国长期的合作和冲突互动表现出来。 国家空间模型(SSMM)将观测到的测量的动态与潜伏状态的转型明确联系起来。 对于离散数据, SMS通常通过州对行动的排放矩阵和州对州过渡矩阵来这样做。 本文将分级矩阵二二氧化二氮(OMD)作为事先分布在订购的蒸汽矩阵之上, 即 kth行的离散分布在( k+1) 中主宰着整个( k+1) 。 因此, 当下行移动时, 概率质量会转移到右边 。 我们用两个 SMMS 来说明 OMD : 一个隐藏的 Markov 模型, 以及 一个为国际关系数据定制的新动态的Poisson Tucker decomposi 模型。 我们发现, 以 OMD 重可解释的定值潜值结构而不会丧失预测性性性性表现。 我们建议未来应用其它域域的模型(eg) 的模型, 出版版。</s>