This thesis focuses on advancing probabilistic logic programming (PLP), which combines probability theory for uncertainty and logic programming for relations. The thesis aims to extend PLP to support both discrete and continuous random variables, which is necessary for applications with numeric data. The first contribution is the introduction of context-specific likelihood weighting (CS-LW), a new sampling algorithm that exploits context-specific independencies for computational gains. Next, a new hybrid PLP, DC#, is introduced, which integrates the syntax of Distributional Clauses with Bayesian logic programs and represents three types of independencies: i) conditional independencies (CIs) modeled in Bayesian networks; ii) context-specific independencies (CSIs) represented by logical rules, and iii) independencies amongst attributes of related objects in relational models expressed by combining rules. The scalable inference algorithm FO-CS-LW is introduced for DC#. Finally, the thesis addresses the lack of approaches for learning hybrid PLP from relational data with missing values and (probabilistic) background knowledge with the introduction of DiceML, which learns the structure and parameters of hybrid PLP and tackles the relational autocompletion problem. The conclusion discusses future directions and open challenges for hybrid PLP.
翻译:本论文侧重于推进概率逻辑编程(PLP),将不确定性的概率理论和关系逻辑编程的逻辑编程结合起来。本论文旨在扩展PLP,以支持不同和连续随机变数,这是数字数据应用程序所必需的。第一个贡献是引入因具体情况而异的可能性加权法(CS-LW),这是一种新的抽样算法,利用因具体情况而异的对计算收益的依赖性。接着,引入一个新的混合PLP(DC##),将分配条款的合成税与巴伊西亚逻辑程序相结合,并代表三种依赖性:(i) 以巴伊西亚网络为模型的有条件依赖性(CIs),以支持离散的随机性(CIs),(ii) 以逻辑规则为代表的针对具体情况的不依赖性(CS-LIs),以及(iii) 结合规则表达的关联模型中相关对象属性的不一致性。可缩放的FO-CS-LW算法(FO-LW)为DC#。最后,本论文论述缺乏学习混合PLPLP的混合方法方法,从关系中学习MLML的引入背景和MLILS的定位,并处理背景,并研究关于缺少的理论背景和结论,并研究。