The rapid development of next-generation networking technologies underscores their transformative role in revolutionizing modern communication systems, enabling faster, more reliable, and highly interconnected solutions. However, such development has also brought challenges to network optimizations. Thanks to the emergence of Large Language Models (LLMs) in recent years, tools including Retrieval Augmented Generation (RAG) have been developed and applied in various fields including networking, and have shown their effectiveness. Taking one step further, the integration of knowledge graphs into RAG frameworks further enhanced the performance of RAG in networking applications such as Intent-Driven Networks (IDNs) and spectrum knowledge maps by providing more contextually relevant responses through more accurate retrieval of related network information. This paper introduces the RAG framework that integrates knowledge graphs in its database and explores such framework's application in networking. We begin by exploring RAG's applications in networking and the limitations of conventional RAG and present the advantages that knowledge graphs' structured knowledge representation brings to the retrieval and generation processes. Next, we propose a detailed GraphRAG-based framework for networking, including a step-by-step tutorial on its construction. Our evaluation through a case study on channel gain prediction demonstrates GraphRAG's enhanced capability in generating accurate, contextually rich responses, surpassing traditional RAG models. Finally, we discuss key future directions for applying knowledge-graphs-empowered RAG frameworks in networking, including robust updates, mitigation of hallucination, and enhanced security measures for networking applications.
翻译:暂无翻译