Virtual Reality (VR) has gained increasing traction among various domains in recent years, with major companies such as Meta, Pico, and Microsoft launching their application stores to support third-party developers in releasing their applications (or simply apps). These apps offer rich functionality but inherently collect privacy-sensitive data, such as user biometrics, behaviors, and the surrounding environment. Nevertheless, there is still a lack of domain-specific regulations to govern the data handling of VR apps, resulting in significant variations in their privacy practices among app stores. In this work, we present the first comprehensive multi-store study of privacy practices in the current VR app ecosystem, covering a large-scale dataset involving 6,565 apps collected from five major app stores. We assess both declarative and behavioral privacy practices of VR apps, using a multi-faceted approach based on natural language processing, reverse engineering, and static analysis. Our assessment reveals significant privacy compliance issues across all stores, underscoring the premature status of privacy protection in this rapidly growing ecosystem. For instance, one third of apps fail to declare their use of sensitive data, and 21.5\% of apps neglect to provide valid privacy policies. Our work sheds light on the status quo of privacy protection within the VR app ecosystem for the first time. Our findings should raise an alert to VR app developers and users, and encourage store operators to implement stringent regulations on privacy compliance among VR apps.


翻译:暂无翻译

0
下载
关闭预览

相关内容

IEEE虚拟现实会议一直是展示虚拟现实(VR)广泛领域研究成果的主要国际场所,包括增强现实(AR),混合现实(MR)和3D用户界面中寻求高质量的原创论文。每篇论文应归类为主要涵盖研究,应用程序或系统,并使用以下准则进行分类:研究论文应描述有助于先进软件,硬件,算法,交互或人为因素发展的结果。应用论文应解释作者如何基于现有思想并将其应用到以新颖的方式解决有趣的问题。每篇论文都应包括对给定应用领域中VR/AR/MR使用成功的评估。 官网地址:http://dblp.uni-trier.de/db/conf/vr/
Linux导论,Introduction to Linux,96页ppt
专知会员服务
81+阅读 · 2020年7月26日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
160+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
论文浅尝 | Question Answering over Freebase
开放知识图谱
19+阅读 · 2018年1月9日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
74+阅读 · 2016年11月26日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
13+阅读 · 2021年5月25日
Arxiv
11+阅读 · 2018年4月8日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
论文浅尝 | Question Answering over Freebase
开放知识图谱
19+阅读 · 2018年1月9日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
74+阅读 · 2016年11月26日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员