It has been shown that equivariant convolution is very helpful for many types of computer vision tasks. Recently, the 2D filter parametrization technique plays an important role when designing equivariant convolutions. However, the current filter parametrization method still has its evident drawbacks, where the most critical one lies in the accuracy problem of filter representation. Against this issue, in this paper we modify the classical Fourier series expansion for 2D filters, and propose a new set of atomic basis functions for filter parametrization. The proposed filter parametrization method not only finely represents 2D filters with zero error when the filter is not rotated, but also substantially alleviates the fence-effect-caused quality degradation when the filter is rotated. Accordingly, we construct a new equivariant convolution method based on the proposed filter parametrization method, named F-Conv. We prove that the equivariance of the proposed F-Conv is exact in the continuous domain, which becomes approximate only after discretization. Extensive experiments show the superiority of the proposed method. Particularly, we adopt rotation equivariant convolution methods to image super-resolution task, and F-Conv evidently outperforms previous filter parametrization based method in this task, reflecting its intrinsic capability of faithfully preserving rotation symmetries in local image features.


翻译:已经显示, 等离子变异对于许多类型的计算机视觉任务非常有帮助。 最近, 2D 过滤器的平衡技术在设计等离子变异时起着重要作用。 但是, 目前过滤器的平衡法仍然有其明显的缺点, 其中最重要的缺点在于过滤器代表的准确性。 与此问题相比, 我们在本文件中修改传统的 Fourier 序列扩展为 2D 过滤器, 并提出一套新的过滤器平衡法功能。 拟议的过滤器平衡法不仅精细代表在过滤器不旋转时出现零差的 2D 过滤器, 而且还大大减轻过滤器旋转时由栅栏效应造成的质量退化。 因此, 我们根据拟议的过滤器配F- Convon 法, 构建一种新的等离子变变法。 我们证明, 拟议的F- Convorm 序列的不均在连续域内, 仅在离异化后可以比较。 广泛的实验显示了拟议方法的优越性。 特别是, 我们采用了先前的轮换制变异化法, 其真实性定型的内置的图像方法。</s>

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
61+阅读 · 2020年3月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
21+阅读 · 2021年2月13日
Arxiv
23+阅读 · 2018年10月1日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员