Combining the outputs of multiple classifiers or experts into a single probabilistic classification is a fundamental task in machine learning with broad applications from classifier fusion to expert opinion pooling. Here we present a hierarchical Bayesian model of probabilistic classifier fusion based on a new correlated Dirichlet distribution. This distribution explicitly models positive correlations between marginally Dirichlet-distributed random vectors thereby allowing explicit modeling of correlations between base classifiers or experts. The proposed model naturally accommodates the classic Independent Opinion Pool and other independent fusion algorithms as special cases. It is evaluated by uncertainty reduction and correctness of fusion on synthetic and real-world data sets. We show that a change in performance of the fused classifier due to uncertainty reduction can be Bayes optimal even for highly correlated base classifiers.
翻译:将多个分类者或专家的产出合并成单一的概率分类,是机器学习的一项基本任务,从分类混集到专家意见汇集等广泛应用。在这里,我们展示了一种基于新的相关狄里赫特分布的、等级分级的巴伊西亚概率分类集集成模式。这种分布明确地模拟了少量分散的随机矢量之间的正相关关系,从而允许对基础分类者或专家之间的相互关系进行明确的建模。提议的模型自然地将经典的独立意见集合和其他独立的集成算法作为特例纳入其中。我们用合成和现实世界数据集的混集的不确定性减少和正确性来评价。我们表明,即使对于高度关联的基本分类者来说,由于不确定性的减少而使装配式分类器的性能发生变化,也可能是最佳的贝伊斯模式。