An adversarial autoencoder conditioned on known parameters of a physical modeling bowed string synthesizer is evaluated for use in parameter estimation and resynthesis tasks. Latent dimensions are provided to capture variance not explained by the conditional parameters. Results are compared with and without the adversarial training, and a system capable of "copying" a given parameter-signal bidirectional relationship is examined. A real-time synthesis system built on a generative, conditioned and regularized neural network is presented, allowing to construct engaging sound synthesizers based purely on recorded data.
翻译:在参数估计和再合成任务中,将评估一个以已知物理模型下垂弦合成器参数为条件的对抗性自动编码器,用于评估参数估计和再合成任务;提供前端尺寸,以捕捉没有条件参数解释的差异;将结果与对抗性训练进行比较,不进行对抗性训练,并检查一个能够“复制”某一参数-信号双向关系的系统;在基因化、有条件和正规化神经网络的基础上,推出一个实时合成系统,以便完全根据记录的数据来建造使用的声音合成器。