In this work, we study the partial sums of independent and identically distributed random variables with the number of terms following a fractional Poisson (FP) distribution. The FP sum contains the Poisson and geometric summations as particular cases. We show that the weak limit of the FP summation, when properly normalized, is a mixture between the normal and Mittag-Leffler distributions, which we call by Normal-Mittag-Leffler (NML) law. A parameter estimation procedure for the NML distribution is developed and the associated asymptotic distribution is derived. Simulations are performed to check the performance of the proposed estimators under finite samples. An empirical illustration on the daily log-returns of the Brazilian stock exchange index (IBOVESPA) shows that the NML distribution captures better the tails than some of its competitors. Related problems such as a mixed Poisson representation for the FP law and the weak convergence for the Conway-Maxwell-Poisson random sum are also addressed.


翻译:在这项工作中,我们研究了独立和相同分布的随机变量的部分总和,以及分数Poisson(FP)分布后的条件数量。FP总和包含作为特定案例的Poisson和几何总和。我们表明,FP总和的微弱限度,在适当正常化时,是正常分布与Mittag-Leffler分布之间的一种混合物,我们根据Sciental-Mittag-Leffler(NML)法称之为这种混合物。正在开发NML分布的参数估计程序,并得出相关的非抽取分布。进行模拟以检查在限定样品下拟议的估算器的性能。关于巴西股票交易所指数(IBOVESPA)的每日日日志回报率的实证说明表明,NML分布比某些竞争者更能捕捉到尾部。相关问题也得到了处理,例如Poisson混合法代表和Conway-Maxwell-Poisson随机总和弱的趋同性。

1
下载
关闭预览

相关内容

专知会员服务
41+阅读 · 2021年4月2日
专知会员服务
76+阅读 · 2021年3月16日
【经典书】线性代数元素,197页pdf
专知会员服务
55+阅读 · 2021年3月4日
【经典书】线性代数,Linear Algebra,525页pdf
专知会员服务
77+阅读 · 2021年1月29日
【干货书】金融数学概念和计算方法的导论,290页pdf
专知会员服务
61+阅读 · 2020年11月16日
《常微分方程》笔记,419页pdf
专知会员服务
71+阅读 · 2020年8月2日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
和积网络综述论文,Sum-product networks: A survey,24页pdf
专知会员服务
23+阅读 · 2020年4月3日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Diffusion Means in Geometric Spaces
Arxiv
0+阅读 · 2021年5月25日
Arxiv
0+阅读 · 2021年5月21日
Arxiv
0+阅读 · 2021年5月20日
Arxiv
0+阅读 · 2021年5月19日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关VIP内容
专知会员服务
41+阅读 · 2021年4月2日
专知会员服务
76+阅读 · 2021年3月16日
【经典书】线性代数元素,197页pdf
专知会员服务
55+阅读 · 2021年3月4日
【经典书】线性代数,Linear Algebra,525页pdf
专知会员服务
77+阅读 · 2021年1月29日
【干货书】金融数学概念和计算方法的导论,290页pdf
专知会员服务
61+阅读 · 2020年11月16日
《常微分方程》笔记,419页pdf
专知会员服务
71+阅读 · 2020年8月2日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
和积网络综述论文,Sum-product networks: A survey,24页pdf
专知会员服务
23+阅读 · 2020年4月3日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员