We present a polynomial-time online algorithm for maximizing the conditional value at risk (CVaR) of a monotone stochastic submodular function. Given $T$ i.i.d. samples from an underlying distribution arriving online, our algorithm produces a sequence of solutions that converges to a ($1-1/e$)-approximate solution with a convergence rate of $O(T^{-1/4})$ for monotone continuous DR-submodular functions. Compared with previous offline algorithms, which require $\Omega(T)$ space, our online algorithm only requires $O(\sqrt{T})$ space. We extend our online algorithm to portfolio optimization for monotone submodular set functions under a matroid constraint. Experiments conducted on real-world datasets demonstrate that our algorithm can rapidly achieve CVaRs that are comparable to those obtained by existing offline algorithms.


翻译:我们提出了一个多元时间在线算法,以尽量扩大单质软体子模块功能在风险条件下的有条件值(CVaR)。考虑到从在线发送的基本分布样本中提取的美元(i.d.d.)的样本,我们的算法产生了一系列解决方案,这些解决方案将聚合为1-1/e$(e$)的近似解决方案,对单质连续DR-子模块功能的趋同率为$O(T ⁇ -1/4})美元。与以前的离线算法相比,这需要$\Omega(T)$的空间,我们的在线算法只需要$O(sqrt{T}) 空间。我们将我们的在线算法扩展至对单质子模块功能的组合优化,在配方体约束下。在现实世界数据集上进行的实验表明,我们的算法可以迅速实现与现有离线算法所获取的相类似的CVaR。

0
下载
关闭预览

相关内容

专知会员服务
91+阅读 · 2021年6月3日
专知会员服务
15+阅读 · 2021年5月21日
专知会员服务
25+阅读 · 2021年4月2日
【Google】梯度下降,48页ppt
专知会员服务
80+阅读 · 2020年12月5日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
4+阅读 · 2018年5月31日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年7月13日
Arxiv
6+阅读 · 2021年6月24日
Logically-Constrained Reinforcement Learning
Arxiv
3+阅读 · 2018年12月6日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
Arxiv
3+阅读 · 2018年2月24日
Arxiv
5+阅读 · 2018年1月30日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
4+阅读 · 2018年5月31日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员