We present a polynomial-time online algorithm for maximizing the conditional value at risk (CVaR) of a monotone stochastic submodular function. Given $T$ i.i.d. samples from an underlying distribution arriving online, our algorithm produces a sequence of solutions that converges to a ($1-1/e$)-approximate solution with a convergence rate of $O(T^{-1/4})$ for monotone continuous DR-submodular functions. Compared with previous offline algorithms, which require $\Omega(T)$ space, our online algorithm only requires $O(\sqrt{T})$ space. We extend our online algorithm to portfolio optimization for monotone submodular set functions under a matroid constraint. Experiments conducted on real-world datasets demonstrate that our algorithm can rapidly achieve CVaRs that are comparable to those obtained by existing offline algorithms.
翻译:我们提出了一个多元时间在线算法,以尽量扩大单质软体子模块功能在风险条件下的有条件值(CVaR)。考虑到从在线发送的基本分布样本中提取的美元(i.d.d.)的样本,我们的算法产生了一系列解决方案,这些解决方案将聚合为1-1/e$(e$)的近似解决方案,对单质连续DR-子模块功能的趋同率为$O(T ⁇ -1/4})美元。与以前的离线算法相比,这需要$\Omega(T)$的空间,我们的在线算法只需要$O(sqrt{T}) 空间。我们将我们的在线算法扩展至对单质子模块功能的组合优化,在配方体约束下。在现实世界数据集上进行的实验表明,我们的算法可以迅速实现与现有离线算法所获取的相类似的CVaR。