This paper establishes bounds on the performance of empirical risk minimization for large-dimensional linear regression. We generalize existing results by allowing the data to be dependent and heavy-tailed. The analysis covers both the cases of identically and heterogeneously distributed observations. Our analysis is nonparametric in the sense that the relationship between the regressand and the regressors is assumed to be unknown. The main results of this paper indicate that the empirical risk minimizer achieves the optimal performance (up to a logarithmic factor) in a dependent data setting.
翻译:本文为大维线性回归最小化实验风险的性能设定了界限。 我们通过允许数据依附和重尾细化来概括现有结果。 分析涵盖了相同和不同分布的观测情况。 我们的分析是非对称的,因为假设回归和递减者之间的关系不明。 本文件的主要结果表明,经验风险最小化器在依赖性数据设置中实现了最佳性能(达到对数系数)。