We introduce a location statistic for distributions on non-linear geometric spaces, the diffusion mean, serving both as an extension of and an alternative to the Fr\'echet mean. The diffusion mean arises as the generalization of Gaussian maximum likelihood analysis to non-linear spaces by maximizing the likelihood of a Brownian motion. The diffusion mean depends on a time parameter $t$, which admits the interpretation of the allowed variance of the mean. The diffusion $t$-mean of a distribution $X$ is the most likely origin of a Brownian motion at time $t$, given the end-point distribution $X$. We give a detailed description of the asymptotic behavior of the diffusion estimator and provide sufficient conditions for the diffusion estimator to be strongly consistent. Furthermore, we present a smeary central limit theorem for diffusion means and investigate properties of the diffusion mean for distributions on the sphere $\mathcal{S}^n$. Experimentally, we consider simulated data and data from magnetic pole reversals, all indicating similar or improved convergence rate compared to the Fr\'echet mean. Here, we additionally estimate $t$ and consider its effects on smeariness and uniqueness of the diffusion mean for distributions on the sphere.
翻译:我们引入了非线性几何空间分布的位置统计, 即扩散平均值, 既作为Fr\'echet值的延伸, 也作为Fr\'echet值的替代物。 扩散平均值是: 通过尽可能扩大布朗运动的可能性, 将高萨的最大可能性分析推广到非线性空间。 扩散平均值取决于一个时间参数$t美元, 承认对允许平均值差异的解释。 分发美元的平均比例是布朗运动最有可能的起源, 时间为$t, 最终点分布为$X美元。 我们详细描述扩散估计值的无约束性行为, 并为传播估计值的高度一致提供了充分的条件。 此外, 我们提出了一个用于传播手段的偏差中心限制, 并调查球传播平均值的传播值 $\ mathcal{S ⁇ n. $. 。 实验性, 我们考虑磁极逆转的模拟数据和数据, 所有这些都表明与Fr\\'echevility 和平均扩散率的类似或改进的趋同率。