In Exact Quantum Query model, almost all of the Boolean functions for which non-trivial query algorithms exist are symmetric in nature. The most well known techniques in this domain exploit parity decision trees, in which the parity of two bits can be obtained by a single query. Thus, exact quantum query algorithms outperforming parity decision trees are rare. In this paper we first obtain optimal exact quantum query algorithms ($Q_{algo}(f)$) for a direct sum based class of $\Omega \left( 2^{\frac{\sqrt{n}}{2}} \right)$ non-symmetric functions. We construct these algorithms by analyzing the algebraic normal form together with a novel untangling strategy. Next we obtain the generalized parity decision tree complexity ($D_{\oplus}(f)$) analysing the Walsh Spectrum. Finally, we show that query complexity of $Q_{algo}$ is $\lceil \frac{3n}{4} \rceil$ whereas $D_{\oplus}(f)$ varies between $n-1$ and $\lceil \frac{3n}{4} \rceil+1$ for different classes, underlining linear separation between the two measures in many cases. To the best of our knowledge, this is the first family of algorithms beyond generalized parity (and thus parity) for a large class of non-symmetric functions. We also implement these techniques for a larger (doubly exponential in $\frac{n}{4}$) class of Maiorana-McFarland type functions, but could only obtain partial results using similar algorithmic techniques.
翻译:在Exact Quantum Query 模型中, 存在非三角查询算法的几乎全部布林函数都是对称性质的。 这一领域最著名的技术利用平等决定树, 可以通过一个单一查询获得两个位数的等距。 因此, 精确量查算算法优于对等决定树。 在本文中, 我们首先获得基于直等的量查询算法( ⁇ algo} (f) $), 直等的直等( $=Omega left) ( 2 ⁇ frac=sqrt{ n ⁇ 2\\\\\right) 美元的非对称函数。 我们通过分析平等正正正正正正正正正方形和新奇的策略来构建这些算法。 下一步我们获得普遍平等决定树的复杂度( $+ oar} (f) 分析 shol Spectrum。 最后, 我们显示, $ algo} 美元 的查询复杂度是 $ lcel = real ral ral $1 lax_ a clex lax lax a clex a clex a clex, lax a clex lax a clex lax a.